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Molecular Fluids at High Dimensionality
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We extend the analysis of orientational first-order phase transitions in
anisotropic molecular fluids at high spatial dimensionality to hard-disk fluids,
and then to mixture of hard disks and hard spheres. The effect of hard-sphere
admixture depends sensitively on the relative sizes of the two geometrical
objects, and large spheres completely quench the disk transition. An introduc-
tory study is made of spatially ordered states.

KEY WORDS: Anisotropic fluid; high-dimensional space; phase transition;
hard particles; fluid mixture.

1. INTRODUCTION

We are delighted to dedicate this paper to George Stell, who has con-
tributed so much to, and stimulated so greatly, the theory of classical
fluids.

As one's interest turns more and more to complex molecular units, it
is important to work in a context in which the essential elements come
through while the details wait in the wings to be introduced. A major con-
ceptual advance was made long ago by Onsager, (1) who realized that much
of the phenomenology of structured molecular fluids already appeared at
the primitive non-uniform second virial level. More recently, similar con-
siderations have appeared in the analysis of demixing of hard-rod
mixtures, (2, 3, 4) but we will not attend to the demixing process in the pre-
sent study. The utility of this drastic simplification was enhanced many
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years later by the observation(5, 6) that suitably scaled systems at high spa-
tial dimensionality were in fact fully described by the second virial level,
with the welcome accompaniment of greater analytic simplicity in this same
limit. A consequence was that phenomena, such as first-order phase trans-
itions, that were robust under increasing spatial dimensionality could be
presented in unusually simple form. This made theoretical analysis easy,
but not trivial, and only a few cases were analyzed in full, notably(7) the
hard cylinder fluid that Onsager had first considered.

In this paper, we would like to extend the above investigations, first to
fluids of hard disks, in which the geometry is a little more involved, where
we will find a carbon copy of the spherocylinder nematic orientational
transition, and then to disks mixed with a hard sphere fluid. The latter of
course serves to weaken the correlations that the disks are using to carry
out their ordering, and we will assess the qualitative fashion in which this
occurs. We hypothesize that the phenomenology uncovered in our high-
dimensional investigation is indeed robust and may be expected to extend
to three dimensions.

2. SINGLE SPECIES

A rigid anisotropic molecule is specified by center of mass and suitable
angular coordinates (r� , |). We will deal with 3-dimensional molecules that
possess a symmetry axis, and it then becomes easy to extend our picture to
D-dimensional space by imagining that this property is maintained. The
location and orientation of the molecule is hence given by the D-dimensional
center of mass r� and the D&1-dimensional set | of hyperspherical angles;
the interaction potential, assumed translation-invariant, by ,(r� &r� $, |, |$ ).
In fact, we shall in this paper restrict our attention to the case of perfectly
hard molecules. Then the familiar(8) density, \(r� , |), expansion of the
Helmholtz free energy takes the form

;F=| \(r� , |)[log \(r� , |)&1] d Dr d D&1|

& 1
2 | \(r� , |) \(r� $, |$) f (r� &r� $, |, |$ ) d Dr d Dr$ d D&1| d D&1|$

& 1
6 | \(r� , |) \(r� $, |$) \(r� ", |") f (r� $&r� ", |$, |") f (r� &r� $, |, |$ )

_f (r� "&r� , |", |) d Dr d Dr$ d Dr" d D&1| d D&1|$ d D&1|"+ } } } (1)
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where f (r� &r� $, |, |$)=&1 or 0 as the particles at (r� , |) and (r� $, |$) do or
do not overlap. Here, ; denotes reciprocal temperature, and the successive
terms in (1) represent ideal gas, second virial, third virial, etc. contribu-
tions.

It has been demonstrated(9) in special cases that in the high dimen-
sional limit, up to densities at which the second virial term overwhelms the
ideal gas contribution��but significantly lower than close packing��the
series (1) truncates at the second virial term. We will hereafter carry out
this truncation without further comment. Our focus will be principally on
spatially uniform states in which angular isotropy is broken, and to study
the transition to the basic nematic phase, we can assume that \ is only a
function of the angle between the molecular symmetry axis and the spatial
alignment axis. Hence, to within a constant,

;f =
;F
V

=| \(%)[log \(%)&1] sinD&2 % d% SD&1

+
1
2 | \(%) \(%$) V(|, |$) d D&1| d D&1|$ (2)

where

SD=| d|D&1=
D?D�2

1 \D
2

+1+
(3)

and

V(|, |$)=&| d DR9 f (R9 , |, |$ ) (4)

is the overlap integral. For both hard rods and hard disks, the overlap
integral takes the form

V(|, |$)=|sin(|, |$ )| B (5)

where

B=L2(2R)D&2 SD&2

D&2
(6)
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for a uniform hard-rod fluid (L is the length of the rod, R is the radius), (7)

and

B=(2R)D ?SD&2

(D&2)2 (7)

for the model of infinitely thin disks (R is the radius of a disk). See
Appendix A.

In a hyperspherical coordinate system we have

|sin(|, |$)|=- 1&cos2(|, |$ )

=[1&(cos % cos %$+sin % sin %$ cos ,$ )2]1�2 (8)

Then

;f =| \(%)[log \(%)&1] sinD&2 % d% SD&1

+
B
2 | \(%) \(%$ )[1&(cos % cos %$+sin % sin %$ cos ,$ )2]1�2

_sinD&2 % d% sinD&2 %$ d%$ sinD&3 ,$ d,$ SD&1SD&2 (9)

In the D � � limit, integration over ,$ can be performed by steepest
descent. We obtain

;f =| \(%)[log \(%)&1] sinD&2 % d% SD&1

+
B
2 | \(%) \(%$ )[1&cos2 % cos2 %$]1�2 sinD&2 % d% sinD&2 %$ d%$ S 2

D&1

(10)

Finding the extremum of (10) under the constraint

| \(%) sinD&2 % d% SD&1=N�V #n (11)

we obtain the equation of state

log \(%)+B | \(%$)(1&cos2 % cos2 %$ )1�2 sinD&2 %$ d%$ SD&1=* (12)
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where * is a Lagrange multiplier. Now we evaluate the integral in (12)
by steepest descent under the assumption that in the D � � limit
the integrand has a sharp maximum at some %=%0 (as in the work of
Carmesin et al., (11) and similar to the strategy used at high concentration
in ref. 3). The result is

\(%)=Ke&(D&2) n� (1&cos2 % cos2 %0)1�2
(13)

where n� has been scaled as n� =Bn�(D&2), taken to have a finite limit as
D � �. %0 is determined from the equation

n� =
(1+cos2 %0)1�2

sin %0 cos2 %0

(14)

The normalization constant K can be found from (11) and turns out to be

log
K
n

=(D&2)(1+sec2 %0&log sin %0)&log SD (15)

Assuming the existence of two phases (isotropic with \(%)=const and
anisotropic with nontrivial \(%) given by (13)) we can write down the
equations for 2-phase equilibrium,

+a=+i , Pa=Pi (16)

Free energy, chemical potential and pressure for both phases can be written
as

;f =n(log n&1)&n_+ 1
2n2{ (17)

;+=log n&_+n{ (18)

;P=n+ 1
2n2{ (19)

where for the isotropic phase

_=log SD (20)

{=B (21)

and for the anisotropic phase

_=log SD+(D&2) log sin %0 (22)

{=B sin %0 (1+cos2 %0)1�2 (23)

139Molecular Fluids at High Dimensionality



Then the equations of phase equilibrium (16) can be written as

log
ni

na
+(D&2) log sin %0+[ni&na sin %0(1+cos2 %0)1�2] B=0 (24)

ni&na+
1
2

[n2
i &n2

a sin %0(1+cos2 %0)1�2] B=0 (25)

compatible with the scaling ni, a= D&2
B n� i, a . In the limit D � � we get the

following solution

%0=0.2773, n� i=3.376, n� a=5.478 (26)

Since n� i {n� a , the transition is first order.

3. UNIFORM MIXTURE OF HARD DISKS AND SPHERES

The phenomenology associated with mixtures can be quite extensive.(10)

The elementary case of two hard sphere species with non-additive hard
interactions is quite traditional�and almost trivial�in the high dimensional
limit, and was analyzed some years ago.(11) When one or more of the
species is not isotropic, the situation becomes potentially more interesting
and involved. Here, we consider perhaps the simplest of this genre, that of
hard (infinitely thin) disks of radius b mixed with hard spheres of radius a.
The same-species contributions to the second virial term of the free energy
are of course those that have been preciously computed, while the mutual
contribution is immediate: the sphere center must be either within a of the
perimeter of the disk or within a of the plane of the disk. We readily find

;F= :
:=1, 2

| \:(r, |)[log \:(r, |)&1] d Dr d D&1|

& 1
2 :

:, ;=1, 2
| \:(r, |) \; (r$, |$) f:; (r&r$, |, |$)

_d Dr d Dr$ d D&1| d D&1|$+ } } } (27)

or

;f =
;F
V

= :
:=1, 2

| \:(|)[log \:(|)&1] d D&1|

+
1
2

:
:, ;=1, 2

| \:(|) \; (|$) V:; (|, |$) d D&1| d D&1|$ (28)
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where

V:; (|, |$)=&| f:; (R, |, |$) d DR (29)

The matrix elements are V11=B11 , V12=V21=B12 , V22=|sin(|, |$)| B22 ,
where

B11=SD
(2a)D

D
, B12=SD&1 � 2?a

a+b
(a+b)D

(D&1)3�2 ,

B22=?SD&2

(2b)D

(D&2)2 (30)

and a is the radius of a sphere, b is the radius of a disk.
Now let us see how the isotropic-nematic transition is affected by the

sphere admixture. First, for the isotropic phase, we set \:=n: �SD , and the
free energy (28) becomes

;f = :
:=1, 2

n:(log n:&1)& :
:=1, 2

n: log SD+ 1
2 :

:, ;=1, 2

n:n;B:; (31)

with chemical potentials

+:=
1
; \log n:&log SD+ :

;=1, 2

B:, ;n;+ (32)

and pressure

P=
1
; \ :

:=1, 2

n:+
1
2

:
:, ;=1, 2

n: n;B:, ; + (33)

Next, in the putative nematic phase, we can write

\1=n1p1(%), \2=n2p2(%) (34)

where p1(%)=1�SD and p2(%)= p(%). We have

;f =:
:

n:(log n:&1)&:
:

n:_:+
1
2

:
:, ;

n: n;{:; (35)
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where

_:=&| p:(|) log p:(|) d D&1| (36)

{:;=| p:(|) p;(|$) V:; (|, |$) d D&1| d D&1|$ (37)

In order to find _1 ,_2 and { we have to minimize (28) subject to con-
straints

| \:(%) sinD&2 % d% SD&1=N: �V#n: (38)

where :=1, 2, imposed by Lagrange parameters *1 , *2 . The equation with
*1 is trivial while for *2 ,

log \2(|)+| \1(|$) V12 (|, |$) d D&1|$+| \2( |$) V22(|, |$) d D&1|$=*2

(39)

Using (34), (29)�(30), assuming that p(%) sinD&2 % is sharply peaked
at %=%0 and integrating via steepest descent, we obtain

p(%)=Ke&(D&2) n� 2 (1&cos 2 % cos 2 %0 )1�2
(40)

where n� 2=n2B22 �(D&2) and %0 is determined from the equation

n� 2=
(1+cos2 %0)1�2

sin %0 cos2 %0

(41)

The normalization constant K is readily found:

log
K
n2

=(D&2)(1+sec2 %0&log sin %0)&log SD (42)

Using steepest descent again and plugging the expression for p(%) into the
formulas for _ and {, we see that

;+#=log n#&_#+ :
;=1, 2

n;{#; (43)

;P= :
:=1, 2

n:+
1
2

:
:, ;=1, 2

n:n;{:; (44)
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with

_1=log SD , _2=log SD+(D&2) log sin %0 (45)

{11=B11 , {12={21=B12 , {22=B22 sin %0(1+cos2 %0)1�2 (46)

4. ORIENTATIONAL PHASE TRANSITION

For our mixture, phase equilibrium requires

+ i
1=+a

1 , + i
2=+a

2 , Pi=Pa (47)

Using the scaling n1=n� 1 (D&2)�B, with B yet unknown, and n2=
n� 2 (D&2)�B22 , we get the scaled system of equations describing phase equi-
librium

log
n� i

1

n� a
1

+(n� i
1&n� a

1)
B11

B
(D&2)+(n� i

2&n� a
2)

B12

B22

(D&2)=0 (48)

log
n� i

2

n� a
2

+(D&2) log sin %0+(n� i
1&n� a

1)
B12

B
(D&2)

+[n� i
2&n� a

2 sin %0 (1+cos2 %0)1�2](D&2)=0 (49)

(n� i
1&n� a

1)
(D&2)

B
+(n� i

2&n� a
2)

(D&2)
B22

+
1
2

([n� i
1]2&[n� a

1]2)
(D&2)2 B11

B2 +(n� i
1n� i

2&n� a
1n� a

2)
(D&2)2 B12

BB22

+
1
2

([n� i
2]2&[n� a

2]2 sin %0(1+cos2 %0)1�2)
(D&2)2

B22

=0 (50)

The analysis depends however on the relative sizes of disks and
spheres. Consider first the case when the radius a of a sphere is less than
the radius b of a disk. Then B12(D&2)�B22 � 0 as D � � and for any B
the relationship

n� i
1=n� a

1 #n� 1 (51)

holds. But the D-dependence of B has not so far been fixed. There are three
possibilities as D � �: B�B12 � 0, B�B12 � � and B�B12 � const (where
const can be taken to be 1 without loss of generality). In the first case, the
system (48)�(51) has no solution and thus the phase transition is absent.
In the second case, a solution does exist, with the coexistence density of the
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Fig. 1. Scaled coexistence densities of disks (with n� a , n� i corresponding to anisotropic and
isotropic phase respectively) and spheres n� 1 (the same in both phases) as functions of the
parameter %0 . Physically meaningful solution exist only for %0�0.2773 (n� 1�0).

disks equal to (26). This coexistence density is independent of the density
of the spheres and thus the presence of the spheres is irrelevant.

Finally, for B=B12 the equilibrium conditions in the limit D � �
become

log sin %0+[n� i
2&n� a

2 sin %0(1+cos2 %0)1�2]=0 (52)

n� 1 (n� i
2&n� a

2)+ 1
2 ([n� i

2]2&[n� a
2]2 sin %0(1+cos2 %0)1�2)=0 (53)

Fig. 2. Dependence of scaled coexistence densities of disks in anisotropic (n� a) and isotropic
(n� i) phases on the density n� 1 of spheres.
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where n� a
2 is defined by (41). The solution is shown in Figures 1 and 2. The

solution exists for %0�0.2773, at which point the density of spheres is zero
and coexistence densities of disks in isotropic and anisotropic phases are
given by (26). For nonzero density of spheres, coexistence densities of disks
depend on the density of spheres as shown in the graph. Note that the
sphere density in the two disk phases are the same, although this particular
aspect may very well not extend to three dimensions.

Now let us consider the case when the radius a of a sphere is greater
than the radius b of a disk. In this case the equilibrium condition reduces
to the following system of equations

(n� i
1&n� a

1)+(n� i
2&n� a

2)
B12B

B11B22

=0 (54)

log sin %0+(n� i
2&n� a

2 sin %0(1+cos2 %0)1�2)+(n� i
1&n� a

1)
B12

B
=0 (55)

(n� i
1 n� i

2&n� a
1n� a

2)+
1
2

([n� i
1]2&[n� a

1]2)
B11B22

BB12

+
1
2

([n� i
1]2&[n� a

1]2 sin %0(1+cos2 %0)1�2)
B

B12

=0 (56)

Analysis shows that for any possible choice of B this system has no solu-
tion and therefore we conclude that the phase transition does not occur.

5. FUTURE DIRECTIONS

Elucidation of the isotropic�nematic orientational transition for pure
disks and disk�sphere mixtures concludes the first phase of our investiga-
tion. There is at least anecdotal evidence leading one to expect a smectic
layering with anisotropy transition to occur in the pure disk case at higher
density. In order to detect this, we must at least assume inhomogeneity in,
say the z-direction. The density of molecules \(r� , |), will therefore be a
function of z and the angle % specifying relative orientation of the molecule
and the z axis, \(r� , |)=\(z, %). With this assumption, the free energy (1)
can be written as

;f =
;F
A

=| \(z, %)[log \(z, %)&1] dz sinD&2 % d% SD&1

+
1
2 | \(z, %) \(z&Z, %$) V(Z, |, |$) dz dZ d D&1| d D&1|$ (57)
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where A=� d D&1r,

V(Z, |, |$)=&| f (R9 , |, |$) d D&1R= (58)

and we have made a change of variables R9 =r� &r� $, with R9 =R9 =+Zẑ.
This analysis is considerably more involved, and so ``for practice'', we

have chosen to spatially order the fluid by a hard hyperplanar wall bound-
ary. Some details of our preliminary study are presented in Appendix B.
Suffice it to say that at high dimensionality, the effect of the wall ``heals''
very rapidly, with no immediate evidence of layering at higher densities,
suggesting that a more delicate multi-scale analysis may be required. This
forms the substance of an ongoing investigation.

APPENDIX A. OVERLAP INTEGRAL EVALUATION:
HOMOGENEOUS CASE

We wish to evaluate

V(|1 , |2)=&| d DR9 f (R9 , |1 , |2) (59)

the overlap integral. Here, f (R9 , |1 , |2)=&1 or 0 as the particles at
(r� 1 , |1) and (r� 2 , |2) with relative position R9 =r� 1&r� 2 do or do not overlap.

First, we are interested in the overlap of two infinitely thin disks of the
same radius a whose relative positions and orientations are specified by the
vector R9 connecting their centers and unit vectors n̂1 and n̂2 orthogonal to
the disks.

In the coordinate system with the origin exactly half-way between the cen-
ters of the disks on the line connecting them, the point with the radius-vector
r� belongs to both disks if and only if the following conditions are satisfied:

\r� &
R9
2 + } n̂1=0 (60)

\r� &
R9
2 +

2

�a2 (61)

\r� +
R9
2 + } n̂2=0 (62)

\r� +
R9
2 +

2

�a2 (63)
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In other words, the overlap function f is nonzero iff the above system
admits a solution r� for a given set R9 , n̂1 , n̂2 .

Introducing new orthogonal unit vectors &̂1 , &̂2 in the plane defined by
n̂1 , n̂2 ,

&̂1=
n̂1+n̂2

- 2A+

, &̂2=
n̂1&n̂2

- 2A&

(64)

where

A+=1+n̂1 n̂2 , A&=1&n̂1 n̂2 , A=A+A&=1&(n̂1 n̂2)2 (65)

We can expand R9 and r� as

R9 =&̂1R1+&̂2 R2+R9 0 (66)

r� =&̂1r1+&̂2r2+r� 0 (67)

where R1=&̂1 } R9 , R2=&̂2 } R9 , r1=&̂1 } r� , r2=&̂2 } r� , i.e. R9 0 and r� 0 are
orthogonal to the plane spanned by &̂1 , &̂2 . Using these expansions and the
inverse of (64),

n̂1=
1

- 2
(- A+ &̂1+- A& &̂2), n̂2=

1

- 2
(- A+ &̂1&- A& &̂2) (68)

we obtain from (60), (62) the following equations

- A+ \r1&
R1

2 ++- A& \r2&
R2

2 +=0 (69)

- A+ \r1+
R1

2 +&- A& \r2+
R2

2 +=0 (70)

the solution of which is given by

r1=�A&

A+

R2

2
, r2=�A+

A&

R1

2
(71)

Similarly, the inequalities (61), (63) reduce to

\r� 0&
R9 0

2 +2�a2&
1

2 \
R1

- A&

&
R2

- A+
+

2

(72)

\r� 0+
R9 0

2 +
2

�a2&
1

2 \
R1

- A&

+
R2

- A+
+

2

(73)
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Inequalities (72), (73) describe the set of points in space corresponding to
the overlap region of two spheres with centers at R9 0 �2 and &R9 0 �2 and
radii squared a2& 1

2 (R1 �- A& &R2 �- A+ )2 and a2& 1
2(R1 �- A& +R2 �

- A+ )2. This set is not empty iff

a2&
1

2 \
R1

- A&

&
R2

- A+
+

2

�0 (74)

a2&
1

2 \
R1

- A&

+
R2

- A+
+

2

�0 (75)

and

�a2&
1

2 \
R1

- A&

&
R2

- A+
+

2

+�a2&
1

2 \
R1

- A&

+
R2

- A+
+

2

�|R9 0 | (76)

The overlap integral (59) becomes

&| d DR f (R9 , |1 , |2)=&| dR1 dR2 d D&2R0 f (R9 , n̂1 , n̂2) (77)

Changing variables to !1 , !2 defined as

!1=
R1

- 2A&

&
R2

- 2A+

, !2=
R1

- 2A&

+
R2

- 2A+

(78)

and writing conditions (74) �(76) in terms of !1 , !2 ,

a2&!2
1�0, a2&!2

2�0, - a2&!2
1 +- a2&!2

2 �|R0 | (79)

we get (dR1dR2=- A d!1d!2)

- A |
a

&a
d!1 |

a

&a
d!2 %(- a2&!2

1 +- a2&!2
2 &|R0 | ) d D&2R0 (80)

where %(x)=0 for x<0, %(x)=1 for x�0. Integration over dR9 0 gives the
volume of a D&2-dimensional sphere with radius - a2&!2

1 +- a2&!2
2 .

We obtain

- A
SD&2

D&2 |
a

&a
d!1 |

a

&a
d!2(- a2&!2

1 +- a2&!2
2 )D&2

=|sin(n̂1 , n̂2)| aD SD&2

D&2
I (81)

148 Yukhimets et al.



where

I=|
1

&1
dx |

1

&1
dy(- 1&x2+- 1& y2)D&2 (82)

The integral (82) can be evaluated by the steepest descent method in the
limit D � �. The leading term of the asymptotics is given by

I=
2D?

D&2
(83)

Inserting this into (81) we finally obtain

V(|, |$)=|sin(|, |$)| (2a)D ?SD&2

(D&2)2 (84)

APPENDIX B. OVERLAP INTEGRAL EVALUATION:
INHOMOGENEOUS CASE

In the inhomogeneous case the overlap integral (52) can be written as

V(Z, |1 , |2)=&| f (R9 , |1 , |2) d D&1R=

=&| f (R9 , |1 , |2) $(R9 } ẑ&Z) d DR (85)

Proceeding as in the homogeneous case (see Appendix A, (60)�(80)) we
find

V(Z, |1 , |2)=- A |
a

&a
d!1 |

a

&a
d!2 %[(- a2&!2

1 +- a2&!2
2 )2&|R9 0 | 2]

_$(R9 } ẑ&Z) d D&2R0 (86)

To perform the integral over R9 0 it is convenient to use the expansion

ẑ=z1 &̂1+z2 &̂2+z� 0 (87)

where z� 0 # RD&2, z1=ẑ } &̂1 , z2=ẑ } &̂2 , &̂1 , &̂2 were defined in (64) and
z0=- 1&z2

1&z2
2 . Introducing &̂0=z� 0 �z0 , we may expand R9 0 as

R9 0=!&̂0+R9 (88)
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where !=(R9 0 , &̂0) and R9 # RD&3. Then

R9 } ẑ=z1R1+z2R2+z0 ! (89)

|R9 0 |2=!2+|R9 |2 (90)

Inverting (78) we can express R1 and R2 in terms of !1 , !2 :

R1=(!2+!1) �A&

2
, R2=(!2&!1) �A+

2
(91)

Then (89) can be written as

R9 } ẑ=:!1+;!2+z0! (92)

where

:=z1 �A&

2
&z2 �A+

2
, ;=z1 �A&

2
+z2 �A+

2
(93)

and the integral (86) becomes

V(Z, |1 , |2)=- A |
a

&a
d!1 |

a

&a
d!2

_%[(- a2&!2
1 +- a2&!2

2 )2&!2&|R9 |2]

_$(:!1+;!2+z0 !&Z) d D&3R d! (94)

Integrating over R9 and then over ! we get, correspondingly

V(Z, |1 , |2)=- A
SD&3

D&3 |
a

&a
d!1 |

a

&a
d!2

_%[(- a2&!2
1 +- a2&!2

2 )2&!2]

_[(- a2&!2
1 +- a2&!2

2 )2&!2](D&3)�2

_$(:!1+;!2+z0!&Z) d! (95)

V(Z, |1 , |2)=# - A
SD&3

D&3 |
a

&a
d!1 |

a

&a
d!2

_%[(- a2&!2
1 +- a2&!2

2 )2&#2(Z&:!1&;!2)2]

_[(- a2&!2
1 +- a2&!2

2 )2&#2(Z&:!1&;!2)2] (D&3)�2

(96)
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where #=1�z0 . Finally, introducing dimensionless variables x=!1 �a,
y=!2�a and `=Z�a, we obtain

V(`, |1 , |2)=# - A aD&1 SD&3

D&3
J(:, ;, #, `) (97)

where

J(:, ;, #, `)=|
1

&1
dx |

1

&1
dy %[(- 1&x2+- 1& y2)2&#2(`&:x&;y)2]

[(- 1&x2+- 1& y2)2&#2(`&:x&;y)2](D&3)�2 (98)

Evaluation of the overlap integral (97)�(98) for D � � in a way
which would preserve its essential dependence on angular variables and Z
is a fairly complicated problem requiring subtle multiscale analysis. The
relevant work is now in progress.
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